Smoothie G28 home command hangs

Hi. I bought a surplus Smoothie 5 axis v1.1 board on ebay a few months ago, and I’m finally getting around to making it talk. I have an Acro laser cutter kit connected to it. I have two Y motors (board jumpered to run both driver ICs from beta axis stepper commands) and one X motor. Both axes on the gantry move properly using pronterface, clicking the various jog rings for 1, 10, and 100mm steps. The limit switches all work properly, left right up and down.
Trouble is, when I give it a Home command G28 X0, the board immediately goes limp, and the blinking LEDs stop blinking. I have to cycle power to get it to respond again.
I don’t understand why it hangs. I have adjusted the homing speeds down. There are no Google results for this problem.
For what it’s worth, I’m an old EE who’s done decades of work on all sorts of embedded systems.
I would really appreciate some help in solving this.
It’s running the most recent stable firmware :
slight_smile:Build version: edge-bdb141f, Build date: Jan 12 2020 10:21:20, MCU: LPC1769, System Clock: 120MHz
5 axis

The config.txt file as below:

# NOTE Lines must not exceed 132 characters

# David Forbes laser cutter 04/11/20

# grbl_mode                                    true             # changes G28 for CNC not 3D printer

## Robot module configurations : general handling of movement G-codes and slicing into moves
default_feed_rate                            4000             # Default rate ( mm/minute ) for G1/G2/G3 moves
default_seek_rate                            4000             # Default rate ( mm/minute ) for G0 moves
mm_per_arc_segment                           0.5              # Arcs are cut into segments ( lines ), this is the length for
                                                              # these segments.  Smaller values mean more resolution,
                                                              # higher values mean faster computation

# Arm solution configuration : Cartesian robot. Translates mm positions into stepper positions
alpha_steps_per_mm                           228.57           # micro(32x) Steps per mm for alpha stepper 14T * 2mm/rev, 200 step
beta_steps_per_mm                            228.57           # micro(32x) Steps per mm for beta stepper

# Planner module configuration : Look-ahead and acceleration configuration
planner_queue_size                           32               # DO NOT CHANGE THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING
acceleration                                 3000             # Acceleration in mm/second/second.
acceleration_ticks_per_second                1000             # Number of times per second the speed is updated
junction_deviation                           0.05             # Similar to the old "max_jerk", in millimeters,
                                                              # see https://github.com/grbl/grbl/blob/master/planner.c
                                                              # and https://github.com/grbl/grbl/wiki/Configuring-Grbl-v0.8
                                                              # Lower values mean being more careful, higher values means being
                                                              # faster and have more jerk
#minimum_planner_speed                       0.0              # sets the minimum planner speed in mm/sec

# Stepper module configuration
microseconds_per_step_pulse                  1                # Duration of step pulses to stepper drivers, in microseconds
base_stepping_frequency                      100000           # Base frequency for stepping

# Cartesian axis speed limits
x_axis_max_speed                             3000            # mm/min
y_axis_max_speed                             3000            # mm/min
z_axis_max_speed                             300              # mm/min

# Stepper module pins ( ports, and pin numbers, appending "!" to the number will invert a pin )
alpha_step_pin                               2.0              # Pin for alpha stepper step signal
alpha_dir_pin                                0.5              # Pin for alpha stepper direction
alpha_en_pin                                 0.4              # Pin for alpha enable pin
alpha_current                                1.0              # X stepper motor current
alpha_max_rate                               3000.0          # mm/min

beta_step_pin                                2.1              # Pin for beta stepper step signal
beta_dir_pin                                 0.11             # Pin for beta stepper direction
beta_en_pin                                  0.10             # Pin for beta enable
beta_current                                 1.0              # Y stepper motor current
beta_max_rate                                3000.0          # mm/min

gamma_step_pin                               nc               # Pin for gamma stepper step signal
gamma_dir_pin                                nc               # Pin for gamma stepper direction
gamma_en_pin                                 nc               # Pin for gamma enable
gamma_max_rate                               300.0            # mm/min


# DF removed gamma pins, wiring motor 3 to motor 2 control pins
gamma_current                                1.0              # Y 2nd stepper motor current

## System configuration
# Serial communications configuration ( baud rate defaults to 9600 if undefined )
uart0.baud_rate                              115200           # Baud rate for the default hardware serial port
second_usb_serial_enable                     false            # This enables a second usb serial port (to have both pronterface
                                                              # and a terminal connected)
#leds_disable                                true             # disable using leds after config loaded
#play_led_disable                            true             # disable the play led

# Kill button (used to be called pause) maybe assigned to a different pin, set to the onboard pin by default
kill_button_enable                           true             # set to true to enable a kill button
kill_button_pin                              2.12             # kill button pin. default is same as pause button 2.12 (2.11 is another good choice)

#msd_disable                                 false            # disable the MSD (USB SDCARD) when set to true (needs special binary)
#dfu_enable                                  false            # for linux developers, set to true to enable DFU
#watchdog_timeout                            10               # watchdog timeout in seconds, default is 10, set to 0 to disable the watchdog

# Only needed on a smoothieboard
currentcontrol_module_enable                 true             #

## Extruder module configuration
extruder.hotend.enable                       false            # Whether to activate the extruder module at all. All configuration is ignored if false

## Laser module configuration
laser_module_enable                          true             # Whether to activate the laser module at all. All configuration is
                                                              # ignored if false.
#laser_module_pin                             2.5             # this pin will be PWMed to control the laser. 
                                                              #   Only P2.0 - P2.5, P1.18, P1.20, P1.21, P1.23, P1.24, P1.26, P3.25, P3.26
                                                              # can be used since laser requires hardware PWM
#laser_module_maximum_power                   1.0             # this is the maximum duty cycle that will be applied to the laser
#laser_module_minimum_power                   0.0             # This is a value just below the minimum duty cycle that keeps the laser
                                                              # active without actually burning.
#laser_module_default_power                   0.8             # This is the default laser power that will be used for cuts if a power 
                                                              # has not been specified.  The value is a scale between
                                                              # the maximum and minimum power levels specified above
#laser_module_pwm_period                      20              # this sets the pwm frequency as the period in microseconds

## Temperature control configuration
# First hotend configuration
temperature_control.hotend.enable            false            # Whether to activate this ( "hotend" ) module at all.
                                                              # All configuration is ignored if false.
## Switch module for fan control
switch.fan.enable                            true             #
switch.fan.input_on_command                  M106             #
switch.fan.input_off_command                 M107             #
switch.fan.output_pin                        2.6              #
switch.fan.output_type                       pwm              # pwm output settable with S parameter in the input_on_comand
#switch.fan.max_pwm                           255              # set max pwm for the pin default is 255

## Endstops
endstops_enable                              true             # the endstop module is enabled by default and can be disabled here
alpha_min_endstop                            1.24!^           # add a ! to invert if endstop is NO connected to ground
alpha_max_endstop                            1.25!^           # NOTE set to nc if this is not installed
alpha_homing_direction                       home_to_min      # or set to home_to_max and set alpha_max
alpha_min                                    0                # this gets loaded after homing when home_to_min is set
alpha_max                                    550              # this gets loaded after homing when home_to_max is set

beta_min_endstop                             1.26!^           #
beta_max_endstop                             1.27!^           #
beta_homing_direction                        home_to_min      #
beta_min                                     0                #
beta_max                                     280              #

gamma_min_endstop                            nc               #
gamma_max_endstop                            nc               #
gamma_homing_direction                       home_to_min      #
gamma_min                                    0                #
gamma_max                                    20               #

# optional order in which axis will home, default is they all home at the same time,
# if this is set it will force each axis to home one at a time in the specified order
homing_order                                  Y              # x axis followed by y
#move_to_origin_after_home                    true            # move XY to 0,0 after homing

# optional enable limit switches, actions will stop if any enabled limit switch is triggered
alpha_limit_enable                           true             # set to true to enable X min and max limit switches
beta_limit_enable                            true             # set to true to enable Y min and max limit switches
gamma_limit_enable                           false            # set to true to enable Z min and max limit switches

alpha_max_travel                             600              # max travel in mm for alpha/X axis when homing
beta_max_travel                              300              # max travel in mm for beta/Y axis when homing

alpha_fast_homing_rate_mm_s                  10               # feedrates in mm/second
beta_fast_homing_rate_mm_s                   10               # "
gamma_fast_homing_rate_mm_s                  4                # "
alpha_slow_homing_rate_mm_s                  5                # "
beta_slow_homing_rate_mm_s                   5                # "
gamma_slow_homing_rate_mm_s                  2                # "

alpha_homing_retract_mm                      5                # distance in mm
beta_homing_retract_mm                       5                # "
gamma_homing_retract_mm                      1                # "

#endstop_debounce_count                      100              # uncomment if you get noise on your endstops, default is 100

## Z-probe
zprobe.enable                                false            # set to true to enable a zprobe

## Panel
panel.enable                                 false            # set to true to enable the panel code

## Network settings
network.enable                               false            # enable the ethernet network services
network.webserver.enable                     true             # enable the webserver
network.telnet.enable                        true             # enable the telnet server
#network.ip_address                          auto             # use dhcp to get ip address

# uncomment the 3 below to manually setup ip address
network.ip_address                           192.168.1.5      # the IP address
network.ip_mask                              255.255.255.0    # the ip mask
network.ip_gateway                           192.168.1.1      # the gateway address
#network.mac_override                        xx.xx.xx.xx.xx.xx # override the mac address, only do this if you have a conflict

I would suggest commenting out all the gamma axis configuration and testing again. Bad idea, see below. I had read only the endstop module code… :roll_eyes:

“Surplus” Smoothieboard? I’m curious, would you mind giving me a picture and/or link? Don’t bother if it’s too much effort, it’s just for my personal curiosity/staying aware of what’s out there.

Arthur,
Here’s the top of the board:


Here’s the bottom:

It looks like a real board to me. No typos.
I read a post from a few months ago about how some 3D printer company had a bunch of these that were surplus to their needs, and were selling them on ebay.

Yeah that looks legit, I’ve seen one already around here, still not sure what the company was though :slight_smile:

1 Like

Now that I have your attention, what’s a good way to figure out why the board is getting stuck when given a Home command? I’ve tried G28 X0 and G28 Y0.
The stepper drivers turn off and LEDs 2 and 3 stop blinking. Power cycle is needed to wake it up again.
I tested the X and Y limit switches using M119. They’re 0 normally, 1 when pressed.
Here’s the debug printout from pronterface (two ‘Jog X -10’ clicks followed by ‘Home X’ click:

SENT: G91
SENT: G0 X10.0 F3000
SENT: G90
RECV: ok
SENT: M114
RECV: ok
RECV: ok
RECV: ok C: X:30.0000 Y:0.0000 Z:0.0000
SENT: G91
SENT: G0 X-10.0 F3000
SENT: G90
RECV: ok
SENT: M114
RECV: ok
RECV: ok
RECV: ok C: X:20.0000 Y:0.0000 Z:0.0000
SENT: G28 X0
SENT: M114 (at this time, stepper motors stop being energized and LEDs 2&3 stop blinking)
SENT: M105
[ERROR] Can’t write to printer (disconnected?) (SerialException): Write timeout
[ERROR] Can’t read from printer (disconnected?) (SerialException): call to ClearCommError failed
SENT: M105

Any ideas?

Does it stop answering/communicating as soon as you send a G28 X0, no matter what, reliably? Can we see your config, and know your firmware version?

Yes, G28 immediately crashes it, every time, guaranteed.
It reliably responds to the move commands by moving as requested before the G28 X0 command.
See my original post for the firmware version and config file.

Ok. The firmware isn’t recent enough, as per the troubleshooting page, please use the very latest config and firmware when asking for help. More importantly, your config is waaay too old even for the firmware, you need to get the very latest example config file, and port your values over to it. DO NOT re-use the old config file, just port your values over to the new one.

Thanks, I’ll give that a try and report the findings.

Still the same symptom of dying at G28 X0.

I used the firmware-latest.bin that’s three days old.
on github: Smoothieware/tree/edge/FirmwareBin
I used the bltouch config.txt file that’s 1 year old.
on github: Smoothieware/blob/1f47a6dd50adf0d3ecac74273b2726d9825b978c/ConfigSamples/Smoothieboard/config
Here’s my version of the config.txt file:

# Smoothieboard configuration file, see http://smoothieware.org/configuring-smoothie
# NOTE Lines must not exceed 132 characters, and '#' characters mean what follows is ignored
## Robot module configurations : general handling of movement G-codes and slicing into moves

# Basic motion configuration
default_feed_rate                            4000             # Default speed (mm/minute) for G1/G2/G3 moves
default_seek_rate                            4000             # Default speed (mm/minute) for G0 moves
mm_per_arc_segment                           0.0              # Fixed length for line segments that divide arcs, 0 to disable
#mm_per_line_segment                         5                # Cut lines into segments this size
mm_max_arc_error                             0.01             # The maximum error for line segments that divide arcs 0 to disable
                                                              # note it is invalid for both the above be 0
                                                              # if both are used, will use largest segment length based on radius

# Arm solution configuration : Cartesian robot. Translates mm positions into stepper positions
# See http://smoothieware.org/stepper-motors
alpha_steps_per_mm                           228.57           # Steps per mm for alpha ( X ) stepper
beta_steps_per_mm                            228.57           # Steps per mm for beta ( Y ) stepper
#gamma_steps_per_mm                           1600             # Steps per mm for gamma ( Z ) stepper

# Planner module configuration : Look-ahead and acceleration configuration
# See http://smoothieware.org/motion-control
acceleration                                 3000             # Acceleration in mm/second/second.
#z_acceleration                              500              # Acceleration for Z only moves in mm/s^2, 0 uses acceleration which is the default. DO NOT SET ON A DELTA
junction_deviation                           0.05             # See http://smoothieware.org/motion-control#junction-deviation
#z_junction_deviation                        0.0              # For Z only moves, -1 uses junction_deviation, zero disables junction_deviation on z moves DO NOT SET ON A DELTA

# Cartesian axis speed limits
x_axis_max_speed                             30000            # Maximum speed in mm/min
y_axis_max_speed                             30000            # Maximum speed in mm/min
#z_axis_max_speed                             300              # Maximum speed in mm/min

# Stepper module configuration
# Pins are defined as  ports, and pin numbers, appending "!" to the number will invert a pin
# See http://smoothieware.org/pin-configuration and http://smoothieware.org/pinout
alpha_step_pin                               2.0              # Pin for alpha stepper step signal
alpha_dir_pin                                0.5              # Pin for alpha stepper direction, add '!' to reverse direction
alpha_en_pin                                 0.4              # Pin for alpha enable pin
alpha_current                                1.5              # X stepper motor current
alpha_max_rate                               30000.0          # Maximum rate in mm/min

beta_step_pin                                2.1              # Pin for beta stepper step signal
beta_dir_pin                                 0.11             # Pin for beta stepper direction, add '!' to reverse direction
beta_en_pin                                  0.10             # Pin for beta enable
beta_current                                 1.5              # Y stepper motor current
beta_max_rate                                30000.0          # Maxmimum rate in mm/min

#gamma_step_pin                               2.2              # Pin for gamma stepper step signal
#gamma_dir_pin                                0.20             # Pin for gamma stepper direction, add '!' to reverse direction
#gamma_en_pin                                 0.19             # Pin for gamma enable
gamma_current                                1.5              # Z stepper motor current
#gamma_max_rate                               300.0            # Maximum rate in mm/min

## Extruder module configuration
# See http://smoothieware.org/extruder
extruder.hotend.enable                          false         # Whether to activate the extruder module at all. All configuration is ignored if false

## Laser module configuration
# See http://smoothieware.org/laser
laser_module_enable                           false           # Whether to activate the laser module at all
laser_module_pwm_pin                          2.5             # This pin will be PWMed to control the laser.
                                                              # Only pins 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 1.18, 1.20, 1.21, 1.23, 1.24, 1.26, 3.25 and 3.26
                                                              # can be used since laser requires hardware PWM, see http://smoothieware.org/pinout
#laser_module_ttl_pin 	                      1.30            # This pin turns on when the laser turns on, and off when the laser turns off.
#laser_module_maximum_power                   1.0             # This is the maximum duty cycle that will be applied to the laser
#laser_module_minimum_power                   0.0             # This is a value just below the minimum duty cycle that keeps the laser
                                                              # active without actually burning.
#laser_module_default_power                   0.8             # This is the default laser power that will be used for cuts if a power has not been specified.  The value is a scale between
                                                              # the maximum and minimum power levels specified above
#laser_module_pwm_period                      20              # This sets the pwm frequency as the period in microseconds

## Temperature control configuration
# See http://smoothieware.org/temperaturecontrol

# First hotend configuration
temperature_control.hotend.enable            false            # Whether to activate this ( "hotend" ) module at all.


temperature_control.bed.enable               false             # Whether to activate this ( "hotend" ) module at all.

# Bang-bang ( simplified ) control
# See http://smoothieware.org/temperaturecontrol#bang-bang
#temperature_control.bed.bang_bang           false            # Set to true to use bang bang control rather than PID
#temperature_control.bed.hysteresis          2.0              # Set to the temperature in degrees C to use as hysteresis

## Switch modules
# See http://smoothieware.org/switch

# Switch module for fan control
switch.fan.enable                            false            # Enable this module
switch.fan.input_on_command                  M106             # Command that will turn this switch on
switch.fan.input_off_command                 M107             # Command that will turn this switch off
switch.fan.output_pin                        2.6              # Pin this module controls
switch.fan.output_type                       pwm              # PWM output settable with S parameter in the input_on_comand
#switch.fan.max_pwm                          255              # Set max pwm for the pin default is 255

#switch.misc.enable                          false             # Enable this module
#switch.misc.input_on_command                M42              # Command that will turn this switch on
#switch.misc.input_off_command               M43              # Command that will turn this switch off
#switch.misc.output_pin                      2.4              # Pin this module controls
#switch.misc.output_type                     digital          # Digital means this is just an on or off pin

#switch.bltouch.enable                    true         #
#switch.bltouch.output_pin                2.4          # sw pwm can use any digital pin
#switch.bltouch.input_on_command          M280         #
#switch.bltouch.input_off_command         M281         #
#switch.bltouch.output_type               swpwm        # sw pwm must be low frequency
#switch.bltouch.pwm_period_ms             20           # 50Hz
#switch.bltouch.startup_state             false        # start up in the stow state
#switch.bltouch.startup_value             7.43         # On boot it will go into stow mode, also set with the M281
#switch.bltouch.default_on_value          3.3          # if M280 is issued without S this is the value it will set it to


## Temperatureswitch
# See http://smoothieware.org/temperatureswitch
# Automatically toggle a switch at a specified temperature. Different ones of these may be defined to monitor different temperatures and switch different swithxes
# Useful to turn on a fan or water pump to cool the hotend
#temperatureswitch.hotend.enable              true            #
#temperatureswitch.hotend.designator          T               # first character of the temperature control designator to use as the temperature sensor to monitor
#temperatureswitch.hotend.switch              misc            # select which switch to use, matches the name of the defined switch
#temperatureswitch.hotend.threshold_temp      60.0            # temperature to turn on (if rising) or off the switch
#temperatureswitch.hotend.heatup_poll         15              # poll heatup at 15 sec intervals
#temperatureswitch.hotend.cooldown_poll       60              # poll cooldown at 60 sec intervals

## Endstops
# See http://smoothieware.org/endstops
endstops_enable                              true             # The endstop module is enabled by default and can be disabled here
#corexy_homing                               false            # Set to true if homing on a hbot or corexy
alpha_min_endstop                            1.24!^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
#alpha_max_endstop                           1.25!^            # Pin to read max endstop, uncomment this and comment the above if using max endstops
alpha_homing_direction                       home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
alpha_min                                    0                # This gets loaded as the current position after homing when home_to_min is set
alpha_max                                    200              # This gets loaded as the current position after homing when home_to_max is set
beta_min_endstop                             1.26!^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
#beta_max_endstop                            1.27!^            # Pin to read max endstop, uncomment this and comment the above if using max endstops
beta_homing_direction                        home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
beta_min                                     0                # This gets loaded as the current position after homing when home_to_min is set
beta_max                                     200              # This gets loaded as the current position after homing when home_to_max is set
#gamma_min_endstop                            1.28^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
#gamma_max_endstop                           1.29^            # Pin to read max endstop, uncomment this and comment the above if using max endstops
#gamma_homing_direction                       home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
#gamma_min                                    0                # This gets loaded as the current position after homing when home_to_min is set
#gamma_max                                    200              # This gets loaded as the current position after homing when home_to_max is set

alpha_max_travel                             500              # Max travel in mm for alpha/X axis when homing
beta_max_travel                              500              # Max travel in mm for beta/Y axis when homing
#gamma_max_travel                             500              # Max travel in mm for gamma/Z axis when homing

# Optional enable limit switches, actions will stop if any enabled limit switch is triggered
#alpha_limit_enable                          false            # Set to true to enable X min and max limit switches
#beta_limit_enable                           false            # Set to true to enable Y min and max limit switches
#gamma_limit_enable                          false            # Set to true to enable Z min and max limit switches

# Endstops home at their fast feedrate first, then once the endstop is found they home again at their slow feedrate for accuracy
alpha_fast_homing_rate_mm_s                  50               # Alpha/X fast homing feedrate in mm/second
alpha_slow_homing_rate_mm_s                  25               # Alpha/X slow homing feedrate in mm/second
beta_fast_homing_rate_mm_s                   50               # Beta/Y  fast homing feedrate in mm/second
beta_slow_homing_rate_mm_s                   25               # Beta/Y  slow homing feedrate in mm/second
#gamma_fast_homing_rate_mm_s                  4                # Gamma/Z fast homing feedrate in mm/second
#gamma_slow_homing_rate_mm_s                  2                # Gamma/Z slow homing feedrate in mm/second

alpha_homing_retract_mm                      5                # Distance to retract from the endstop after it is hit for alpha/X
beta_homing_retract_mm                       5                # Distance to retract from the endstop after it is hit for beta/Y
#gamma_homing_retract_mm                      1                # Distance to retract from the endstop after it is hit for gamma/Z


# Optional enable limit switches, actions will stop if any enabled limit switch is triggered (all are set for delta)
#alpha_limit_enable                          false            # Set to true to enable X min and max limit switches
#beta_limit_enable                           false            # Set to true to enable Y min and max limit switches
#gamma_limit_enable                          false            # Set to true to enable Z min and max limit switches

# Optional order in which axis will home, default is they all home at the same time,
# If this is set it will force each axis to home one at a time in the specified order
#homing_order                                 XYZ              # X axis followed by Y then Z last
#move_to_origin_after_home                    false            # Move XY to 0,0 after homing
#endstop_debounce_count                       100              # Uncomment if you get noise on your endstops, default is 100
#endstop_debounce_ms                          1                # Uncomment if you get noise on your endstops, default is 1 millisecond debounce
#home_z_first                                 true             # Uncomment and set to true to home the Z first, otherwise Z homes after XY

# End of endstop config
# Delete the above endstop section and uncomment next line and copy and edit Snippets/abc-endstop.config file to enable endstops for ABC axis
#include abc-endstop.config

## Z-probe
# See http://smoothieware.org/zprobe
zprobe.enable                                false           # Set to true to enable a zprobe
zprobe.probe_pin                             1.28!^          # Pin probe is attached to, if NC remove the !
zprobe.slow_feedrate                         5               # Mm/sec probe feed rate
#zprobe.debounce_ms                          1               # Set if noisy
zprobe.fast_feedrate                         100             # Move feedrate mm/sec
zprobe.probe_height                          5               # How much above bed to start probe
#gamma_min_endstop                           nc              # Normally 1.28. Change to nc to prevent conflict,

# Levelling strategy
# Example for 3-point levelling strategy, see wiki documentation for other strategies
#leveling-strategy.three-point-leveling.enable         true        # a leveling strategy that probes three points to define a plane and keeps the Z parallel to that plane
#leveling-strategy.three-point-leveling.point1         100.0,0.0   # the first probe point (x,y) optional may be defined with M557
#leveling-strategy.three-point-leveling.point2         200.0,200.0 # the second probe point (x,y)
#leveling-strategy.three-point-leveling.point3         0.0,200.0   # the third probe point (x,y)
#leveling-strategy.three-point-leveling.home_first     true        # home the XY axis before probing
#leveling-strategy.three-point-leveling.tolerance      0.03        # the probe tolerance in mm, anything less that this will be ignored, default is 0.03mm
#leveling-strategy.three-point-leveling.probe_offsets  0,0,0       # the probe offsets from nozzle, must be x,y,z, default is no offset
#leveling-strategy.three-point-leveling.save_plane     false       # set to true to allow the bed plane to be saved with M500 default is false

## Panel
# See http://smoothieware.org/panel
# Please find your panel on the wiki and copy/paste the right configuration here
panel.enable                                 false             # Set to true to enable the panel code

# Example for reprap discount GLCD
# on glcd EXP1 is to left and EXP2 is to right, pin 1 is bottom left, pin 2 is top left etc.
# +5v is EXP1 pin 10, Gnd is EXP1 pin 9
#panel.lcd                                   reprap_discount_glcd     #
#panel.spi_channel                           0                 # SPI channel to use  ; GLCD EXP1 Pins 3,5 (MOSI, SCLK)
#panel.spi_cs_pin                            0.16              # SPI chip select     ; GLCD EXP1 Pin 4
#panel.encoder_a_pin                         3.25!^            # Encoder pin         ; GLCD EXP2 Pin 3
#panel.encoder_b_pin                         3.26!^            # Encoder pin         ; GLCD EXP2 Pin 5
#panel.click_button_pin                      1.30!^            # Click button        ; GLCD EXP1 Pin 2
#panel.buzz_pin                              1.31              # Pin for buzzer      ; GLCD EXP1 Pin 1
#panel.back_button_pin                       2.11!^            # Back button         ; GLCD EXP2 Pin 8

panel.menu_offset                            0                 # Some panels will need 1 here

panel.alpha_jog_feedrate                     6000              # X jogging feedrate in mm/min
panel.beta_jog_feedrate                      6000              # Y jogging feedrate in mm/min
panel.gamma_jog_feedrate                     200               # Z jogging feedrate in mm/min

panel.hotend_temperature                     185               # Temp to set hotend when preheat is selected
panel.bed_temperature                        60                # Temp to set bed when preheat is selected

## Custom menus : Example of a custom menu entry, which will show up in the Custom entry.
# NOTE _ gets converted to space in the menu and commands, | is used to separate multiple commands
custom_menu.power_on.enable                true              #
custom_menu.power_on.name                  Power_on          #
custom_menu.power_on.command               M80               #

custom_menu.power_off.enable               true              #
custom_menu.power_off.name                 Power_off         #
custom_menu.power_off.command              M81               #


## Network settings
# See http://smoothieware.org/network
network.enable                               false            # Enable the ethernet network services
network.webserver.enable                     true             # Enable the webserver
network.telnet.enable                        true             # Enable the telnet server
network.ip_address                           auto             # Use dhcp to get ip address
# Uncomment the 3 below to manually setup ip address
#network.ip_address                           192.168.1.5     # The IP address
#network.ip_mask                              255.255.255.0   # The ip mask
#network.ip_gateway                           192.168.1.1     # The gateway address
#network.mac_override                         xx.xx.xx.xx.xx.xx  # Override the mac address, only do this if you have a conflict

## System configuration
# Serial communications configuration ( baud rate defaults to 9600 if undefined )
# For communication over the UART port, *not* the USB/Serial port
uart0.baud_rate                              115200           # Baud rate for the default hardware ( UART ) serial port

second_usb_serial_enable                     false            # This enables a second USB serial port
#leds_disable                                true             # Disable using leds after config loaded
#play_led_disable                            true             # Disable the play led

# Kill button maybe assigned to a different pin, set to the onboard pin by default
# See http://smoothieware.org/killbutton
kill_button_enable                           false            # Set to true to enable a kill button
kill_button_pin                              2.12             # Kill button pin. default is same as pause button 2.12 (2.11 is another good choice)

#msd_disable                                 false            # Disable the MSD (USB SDCARD), see http://smoothieware.org/troubleshooting#disable-msd
#dfu_enable                                  false            # For linux developers, set to true to enable DFU

# Only needed on a smoothieboard
# See http://smoothieware.org/currentcontrol
currentcontrol_module_enable                 true             # Control stepper motor current via the configuration file

How can I diagnose this problem? Is there any verbose debugging mode available in the firmware?

Can you try just re-enabling gamma/Z and seeing if you get different behavior please.

Yeah ok lead dev confirmed you shouldn’t removed gamma like that, the math/planning is in 3D, it’s not going to be happy if an axis is missing.

Can still have it missing from endstop, that’s fine. just don’t remove the axis

I reinstated gamma axis in the top part of the config file, but turned off the stepper outputs because it can’t move in Y when they’re present. I’m using the gamma driver to run a second Y motor with jumper wires for these signals.
No change in symptoms. Still dies on G28.

Never mind. it works in LightBurn without using the G28 command. I move the carriage manually to the lower left corner and set origin here.

This is clearly the “you shouldn’t disable gamma” issue from the motion-control page. you can get things working by keeping gamma but just setting it’s pins to “nc”.

Arthur,
I have kept gamma in the config.txt file, with the pins set to nc.
The symptom of G28 X0 hanging the board in pronterface still happens.
If you have a config.txt file for the use of two-axis motion that works properly, please post a link to it.

Here’s my current config.txt file…
# Smoothieboard configuration file, see http://smoothieware.org/configuring-smoothie
# NOTE Lines must not exceed 132 characters, and ‘#’ characters mean what follows is ignored
## Robot module configurations : general handling of movement G-codes and slicing into moves

# Basic motion configuration
default_feed_rate                            4000             # Default speed (mm/minute) for G1/G2/G3 moves
default_seek_rate                            4000             # Default speed (mm/minute) for G0 moves
mm_per_arc_segment                           0.0              # Fixed length for line segments that divide arcs, 0 to disable
#mm_per_line_segment                         5                # Cut lines into segments this size
mm_max_arc_error                             0.01             # The maximum error for line segments that divide arcs 0 to disable
                                                              # note it is invalid for both the above be 0
                                                              # if both are used, will use largest segment length based on radius

# Arm solution configuration : Cartesian robot. Translates mm positions into stepper positions
# See http://smoothieware.org/stepper-motors
alpha_steps_per_mm                           228.57           # Steps per mm for alpha ( X ) stepper
beta_steps_per_mm                            228.57           # Steps per mm for beta ( Y ) stepper
gamma_steps_per_mm                           1600             # Steps per mm for gamma ( Z ) stepper

# Planner module configuration : Look-ahead and acceleration configuration
# See http://smoothieware.org/motion-control
acceleration                                 3000             # Acceleration in mm/second/second.
#z_acceleration                              500              # Acceleration for Z only moves in mm/s^2, 0 uses acceleration which is the default. DO NOT SET ON A DELTA
junction_deviation                           0.05             # See http://smoothieware.org/motion-control#junction-deviation
#z_junction_deviation                        0.0              # For Z only moves, -1 uses junction_deviation, zero disables junction_deviation on z moves DO NOT SET ON A DELTA

# Cartesian axis speed limits
x_axis_max_speed                             30000            # Maximum speed in mm/min
y_axis_max_speed                             30000            # Maximum speed in mm/min
z_axis_max_speed                             300              # Maximum speed in mm/min

# Stepper module configuration
# Pins are defined as  ports, and pin numbers, appending "!" to the number will invert a pin
# See http://smoothieware.org/pin-configuration and http://smoothieware.org/pinout
alpha_step_pin                               2.0              # Pin for alpha stepper step signal
alpha_dir_pin                                0.5              # Pin for alpha stepper direction, add '!' to reverse direction
alpha_en_pin                                 0.4              # Pin for alpha enable pin
alpha_current                                1.5              # X stepper motor current
alpha_max_rate                               30000.0          # Maximum rate in mm/min

beta_step_pin                                2.1              # Pin for beta stepper step signal
beta_dir_pin                                 0.11             # Pin for beta stepper direction, add '!' to reverse direction
beta_en_pin                                  0.10             # Pin for beta enable
beta_current                                 1.5              # Y stepper motor current
beta_max_rate                                30000.0          # Maxmimum rate in mm/min

gamma_step_pin                               nc               # Pin for gamma stepper step signal
gamma_dir_pin                                nc               # Pin for gamma stepper direction, add '!' to reverse direction
gamma_en_pin                                 nc               # Pin for gamma enable
gamma_current                                1.5              # Z stepper motor current
gamma_max_rate                               300.0            # Maximum rate in mm/min

## Extruder module configuration
# See http://smoothieware.org/extruder
extruder.hotend.enable                          false         # Whether to activate the extruder module at all. All configuration is ignored if false

## Laser module configuration
# See http://smoothieware.org/laser
laser_module_enable                           false           # Whether to activate the laser module at all
laser_module_pwm_pin                          2.5             # This pin will be PWMed to control the laser.
                                                              # Only pins 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 1.18, 1.20, 1.21, 1.23, 1.24, 1.26, 3.25 and 3.26
                                                              # can be used since laser requires hardware PWM, see http://smoothieware.org/pinout
#laser_module_ttl_pin 	                      1.30            # This pin turns on when the laser turns on, and off when the laser turns off.
#laser_module_maximum_power                   1.0             # This is the maximum duty cycle that will be applied to the laser
#laser_module_minimum_power                   0.0             # This is a value just below the minimum duty cycle that keeps the laser
                                                              # active without actually burning.
#laser_module_default_power                   0.8             # This is the default laser power that will be used for cuts if a power has not been specified.  The value is a scale between
                                                              # the maximum and minimum power levels specified above
#laser_module_pwm_period                      20              # This sets the pwm frequency as the period in microseconds

## Temperature control configuration
# See http://smoothieware.org/temperaturecontrol

# First hotend configuration
temperature_control.hotend.enable            false            # Whether to activate this ( "hotend" ) module at all.


temperature_control.bed.enable               false             # Whether to activate this ( "hotend" ) module at all.

# Bang-bang ( simplified ) control
# See http://smoothieware.org/temperaturecontrol#bang-bang
#temperature_control.bed.bang_bang           false            # Set to true to use bang bang control rather than PID
#temperature_control.bed.hysteresis          2.0              # Set to the temperature in degrees C to use as hysteresis

## Switch modules
# See http://smoothieware.org/switch

# Switch module for fan control
switch.fan.enable                            false            # Enable this module
switch.fan.input_on_command                  M106             # Command that will turn this switch on
switch.fan.input_off_command                 M107             # Command that will turn this switch off
switch.fan.output_pin                        2.6              # Pin this module controls
switch.fan.output_type                       pwm              # PWM output settable with S parameter in the input_on_comand
#switch.fan.max_pwm                          255              # Set max pwm for the pin default is 255

#switch.misc.enable                          false             # Enable this module
#switch.misc.input_on_command                M42              # Command that will turn this switch on
#switch.misc.input_off_command               M43              # Command that will turn this switch off
#switch.misc.output_pin                      2.4              # Pin this module controls
#switch.misc.output_type                     digital          # Digital means this is just an on or off pin

#switch.bltouch.enable                    true         #
#switch.bltouch.output_pin                2.4          # sw pwm can use any digital pin
#switch.bltouch.input_on_command          M280         #
#switch.bltouch.input_off_command         M281         #
#switch.bltouch.output_type               swpwm        # sw pwm must be low frequency
#switch.bltouch.pwm_period_ms             20           # 50Hz
#switch.bltouch.startup_state             false        # start up in the stow state
#switch.bltouch.startup_value             7.43         # On boot it will go into stow mode, also set with the M281
#switch.bltouch.default_on_value          3.3          # if M280 is issued without S this is the value it will set it to


## Temperatureswitch
# See http://smoothieware.org/temperatureswitch
# Automatically toggle a switch at a specified temperature. Different ones of these may be defined to monitor different temperatures and switch different swithxes
# Useful to turn on a fan or water pump to cool the hotend
#temperatureswitch.hotend.enable              true            #
#temperatureswitch.hotend.designator          T               # first character of the temperature control designator to use as the temperature sensor to monitor
#temperatureswitch.hotend.switch              misc            # select which switch to use, matches the name of the defined switch
#temperatureswitch.hotend.threshold_temp      60.0            # temperature to turn on (if rising) or off the switch
#temperatureswitch.hotend.heatup_poll         15              # poll heatup at 15 sec intervals
#temperatureswitch.hotend.cooldown_poll       60              # poll cooldown at 60 sec intervals

## Endstops
# See http://smoothieware.org/endstops
endstops_enable                              true             # The endstop module is enabled by default and can be disabled here
#corexy_homing                               false            # Set to true if homing on a hbot or corexy
alpha_min_endstop                            1.24!^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
alpha_max_endstop                            1.25!^            # Pin to read max endstop, uncomment this and comment the above if using max endstops
alpha_homing_direction                       home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
alpha_min                                    0                # This gets loaded as the current position after homing when home_to_min is set
alpha_max                                    200              # This gets loaded as the current position after homing when home_to_max is set
beta_min_endstop                             1.26!^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
beta_max_endstop                             1.27!^            # Pin to read max endstop, uncomment this and comment the above if using max endstops
beta_homing_direction                        home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
beta_min                                     0                # This gets loaded as the current position after homing when home_to_min is set
beta_max                                     200              # This gets loaded as the current position after homing when home_to_max is set
#gamma_min_endstop                            1.28^            # Pin to read min endstop, add a ! to invert if endstop is NO connected to ground
#gamma_max_endstop                           1.29^            # Pin to read max endstop, uncomment this and comment the above if using max endstops
#gamma_homing_direction                       home_to_min      # Or set to home_to_max and set alpha_max and uncomment the alpha_max_endstop
#gamma_min                                    0                # This gets loaded as the current position after homing when home_to_min is set
#gamma_max                                    200              # This gets loaded as the current position after homing when home_to_max is set

alpha_max_travel                             500              # Max travel in mm for alpha/X axis when homing
beta_max_travel                              500              # Max travel in mm for beta/Y axis when homing
gamma_max_travel                             500              # Max travel in mm for gamma/Z axis when homing

# Optional enable limit switches, actions will stop if any enabled limit switch is triggered
alpha_limit_enable                           true             # Set to true to enable X min and max limit switches
beta_limit_enable                            true             # Set to true to enable Y min and max limit switches
gamma_limit_enable                           false            # Set to true to enable Z min and max limit switches

# Endstops home at their fast feedrate first, then once the endstop is found they home again at their slow feedrate for accuracy
alpha_fast_homing_rate_mm_s                  50               # Alpha/X fast homing feedrate in mm/second
alpha_slow_homing_rate_mm_s                  25               # Alpha/X slow homing feedrate in mm/second
beta_fast_homing_rate_mm_s                   50               # Beta/Y  fast homing feedrate in mm/second
beta_slow_homing_rate_mm_s                   25               # Beta/Y  slow homing feedrate in mm/second
gamma_fast_homing_rate_mm_s                  4                # Gamma/Z fast homing feedrate in mm/second
gamma_slow_homing_rate_mm_s                  2                # Gamma/Z slow homing feedrate in mm/second

alpha_homing_retract_mm                      5                # Distance to retract from the endstop after it is hit for alpha/X
beta_homing_retract_mm                       5                # Distance to retract from the endstop after it is hit for beta/Y
gamma_homing_retract_mm                      1                # Distance to retract from the endstop after it is hit for gamma/Z


# Optional enable limit switches, actions will stop if any enabled limit switch is triggered (all are set for delta)
#alpha_limit_enable                          false            # Set to true to enable X min and max limit switches
#beta_limit_enable                           false            # Set to true to enable Y min and max limit switches
#gamma_limit_enable                          false            # Set to true to enable Z min and max limit switches

# Optional order in which axis will home, default is they all home at the same time,
# If this is set it will force each axis to home one at a time in the specified order
#homing_order                                 XYZ              # X axis followed by Y then Z last
#move_to_origin_after_home                    false            # Move XY to 0,0 after homing
#endstop_debounce_count                       100              # Uncomment if you get noise on your endstops, default is 100
#endstop_debounce_ms                          1                # Uncomment if you get noise on your endstops, default is 1 millisecond debounce
#home_z_first                                 true             # Uncomment and set to true to home the Z first, otherwise Z homes after XY

# End of endstop config
# Delete the above endstop section and uncomment next line and copy and edit Snippets/abc-endstop.config file to enable endstops for ABC axis
#include abc-endstop.config

## Z-probe
# See http://smoothieware.org/zprobe
zprobe.enable                                false           # Set to true to enable a zprobe
zprobe.probe_pin                             1.28!^          # Pin probe is attached to, if NC remove the !
zprobe.slow_feedrate                         5               # Mm/sec probe feed rate
#zprobe.debounce_ms                          1               # Set if noisy
zprobe.fast_feedrate                         100             # Move feedrate mm/sec
zprobe.probe_height                          5               # How much above bed to start probe
#gamma_min_endstop                           nc              # Normally 1.28. Change to nc to prevent conflict,

# Levelling strategy
# Example for 3-point levelling strategy, see wiki documentation for other strategies
#leveling-strategy.three-point-leveling.enable         true        # a leveling strategy that probes three points to define a plane and keeps the Z parallel to that plane
#leveling-strategy.three-point-leveling.point1         100.0,0.0   # the first probe point (x,y) optional may be defined with M557
#leveling-strategy.three-point-leveling.point2         200.0,200.0 # the second probe point (x,y)
#leveling-strategy.three-point-leveling.point3         0.0,200.0   # the third probe point (x,y)
#leveling-strategy.three-point-leveling.home_first     true        # home the XY axis before probing
#leveling-strategy.three-point-leveling.tolerance      0.03        # the probe tolerance in mm, anything less that this will be ignored, default is 0.03mm
#leveling-strategy.three-point-leveling.probe_offsets  0,0,0       # the probe offsets from nozzle, must be x,y,z, default is no offset
#leveling-strategy.three-point-leveling.save_plane     false       # set to true to allow the bed plane to be saved with M500 default is false

## Panel
# See http://smoothieware.org/panel
# Please find your panel on the wiki and copy/paste the right configuration here
panel.enable                                 false             # Set to true to enable the panel code

# Example for reprap discount GLCD
# on glcd EXP1 is to left and EXP2 is to right, pin 1 is bottom left, pin 2 is top left etc.
# +5v is EXP1 pin 10, Gnd is EXP1 pin 9
#panel.lcd                                   reprap_discount_glcd     #
#panel.spi_channel                           0                 # SPI channel to use  ; GLCD EXP1 Pins 3,5 (MOSI, SCLK)
#panel.spi_cs_pin                            0.16              # SPI chip select     ; GLCD EXP1 Pin 4
#panel.encoder_a_pin                         3.25!^            # Encoder pin         ; GLCD EXP2 Pin 3
#panel.encoder_b_pin                         3.26!^            # Encoder pin         ; GLCD EXP2 Pin 5
#panel.click_button_pin                      1.30!^            # Click button        ; GLCD EXP1 Pin 2
#panel.buzz_pin                              1.31              # Pin for buzzer      ; GLCD EXP1 Pin 1
#panel.back_button_pin                       2.11!^            # Back button         ; GLCD EXP2 Pin 8

panel.menu_offset                            0                 # Some panels will need 1 here

panel.alpha_jog_feedrate                     6000              # X jogging feedrate in mm/min
panel.beta_jog_feedrate                      6000              # Y jogging feedrate in mm/min
panel.gamma_jog_feedrate                     200               # Z jogging feedrate in mm/min

panel.hotend_temperature                     185               # Temp to set hotend when preheat is selected
panel.bed_temperature                        60                # Temp to set bed when preheat is selected

## Custom menus : Example of a custom menu entry, which will show up in the Custom entry.
# NOTE _ gets converted to space in the menu and commands, | is used to separate multiple commands
custom_menu.power_on.enable                true              #
custom_menu.power_on.name                  Power_on          #
custom_menu.power_on.command               M80               #

custom_menu.power_off.enable               true              #
custom_menu.power_off.name                 Power_off         #
custom_menu.power_off.command              M81               #


## Network settings
# See http://smoothieware.org/network
network.enable                               false            # Enable the ethernet network services
network.webserver.enable                     true             # Enable the webserver
network.telnet.enable                        true             # Enable the telnet server
network.ip_address                           auto             # Use dhcp to get ip address
# Uncomment the 3 below to manually setup ip address
#network.ip_address                           192.168.1.5     # The IP address
#network.ip_mask                              255.255.255.0   # The ip mask
#network.ip_gateway                           192.168.1.1     # The gateway address
#network.mac_override                         xx.xx.xx.xx.xx.xx  # Override the mac address, only do this if you have a conflict

## System configuration
# Serial communications configuration ( baud rate defaults to 9600 if undefined )
# For communication over the UART port, *not* the USB/Serial port
uart0.baud_rate                              115200           # Baud rate for the default hardware ( UART ) serial port

second_usb_serial_enable                     false            # This enables a second USB serial port
#leds_disable                                true             # Disable using leds after config loaded
#play_led_disable                            true             # Disable the play led

# Kill button maybe assigned to a different pin, set to the onboard pin by default
# See http://smoothieware.org/killbutton
kill_button_enable                           false            # Set to true to enable a kill button
kill_button_pin                              2.12             # Kill button pin. default is same as pause button 2.12 (2.11 is another good choice)

#msd_disable                                 false            # Disable the MSD (USB SDCARD), see http://smoothieware.org/troubleshooting#disable-msd
#dfu_enable                                  false            # For linux developers, set to true to enable DFU

# Only needed on a smoothieboard
# See http://smoothieware.org/currentcontrol
currentcontrol_module_enable                 true             # Control stepper motor current via the configuration file

See what you’ve done with the extruder? You shouldn’t do that. The general idea here is you should modify strictly only what you need to test your issue, absolutely nothing more. Once things work, you can get fancier with your file ( though things like this by the way, we still recommend you don’t touch if you don’t need to ).

Please get the example config file on the wiki, and edit absolutely strictly only what you need to modify to test this specific issue, absolutely nothing more, and report. Ideally you should be able to post not just the config file, but also a very short list on the modifications you’ve done from the original/example.

Cheers.