Heaters Stuck On - Board Unresponsive, no warning lights flash

Hello, Bandanam4n Here asking a question. For the most part, the information is contained in the summary, I have two seperate printers, each on 24v having issues with the mofsets sticking on and the board locking up. Sometimes this happens on initial heat-up where it quits responding, but sometimes its halfway through a print. After I reset the printer (not even a power reset, just a button press) the mofsets reset and behave normally. The mofsets that stick on are the fan mofsets, and both the heater and bed ones.

The fact that its all 3 mofsets on both boards, the board isn’t responsive, and the mofsets all behave correctly once reset leads me to believe there is something wrong with the circuitry/programming specific to the Azteeg X5 GT.

I’ve tried updating and downgrading firmware, new SD cards, new Configs, setting up the thermal protection configs, and everything else that I can find in the troubleshooting sections.

I need some help. I’ve already submitted a ticket to Panucatt but I’ve had no response as of yet.

My config file is as follows:

[[code]]# Robot module configurations : general handling of movement G-codes and slicing into moves
default_feed_rate 60000 # Default rate ( mm/minute ) for G1/G2/G3 moves
default_seek_rate 120000 # Default rate ( mm/minute ) for G0 moves
mm_per_arc_segment 0.5 # Arcs are cut into segments ( lines ), this is the length for these segments. Smaller values mean more resolution, higher values mean faster computation
#mm_per_line_segment 5 # Lines can be cut into segments ( not usefull with cartesian coordinates robots ).

  1. Arm solution configuration : Cartesian robot. Translates mm positions into stepper positions

alpha_steps_per_mm 318.9077 # Steps per mm for alpha stepper
beta_steps_per_mm 318.438 # Steps per mm for beta stepper
gamma_steps_per_mm 3225.99 # Steps per mm for gamma stepper

  1. Planner module configuration : Look-ahead and acceleration configuration

planner_queue_size 32 # DO NOT CHANGE THIS UNLESS YOU KNOW EXACTLY WHAT YOUR ARE DOING
acceleration 5000 # Acceleration in mm/second/second.
beta_acceleration 500 # Y axis Accel
z_acceleration 500 # Acceleration for Z only moves in mm/s^2, 0 disables it, disabled by default. DO NOT SET ON A DELTA
acceleration_ticks_per_second 1000 # Number of times per second the speed is updated
junction_deviation 0.05 # Similar to the old "max_jerk", in millimeters, see :
# and . Lower values mean being more careful, higher values means being faster and have more jerk

  1. Stepper module configuration

microseconds_per_step_pulse 1 # Duration of step pulses to stepper drivers, in microseconds
base_stepping_frequency 100000 # Base frequency for stepping

  1. Stepper module pins ( ports, and pin numbers, appending "!" to the number will invert a pin )

alpha_step_pin 2.1 # Pin for alpha stepper step signal
alpha_dir_pin 0.11 # Pin for alpha stepper direction
alpha_en_pin nc # Pin for alpha enable pin 0.10
alpha_current 1 # X stepper motor current
x_axis_max_speed 18000 # mm/min
alpha_max_rate 60000.0 # mm/min actuator max speed

beta_step_pin 2.2 # Pin for beta stepper step signal
beta_dir_pin 0.20 # Pin for beta stepper direction
beta_en_pin nc # Pin for beta enable
beta_current 2 # Y stepper motor current
y_axis_max_speed 18000 # mm/min
beta_max_rate 60000.0 # mm/min actuator max speed

gamma_step_pin 2.3 # Pin for gamma stepper step signal
gamma_dir_pin 0.22 # Pin for gamma stepper direction
gamma_en_pin nc # Pin for gamma enable
gamma_current 2 # Z stepper motor current
z_axis_max_speed 1500 # mm/min
gamma_max_rate 30000 # mm/min actuator max speed

  1. bigfoot settings

motor_driver_control.alpha.enable true # alpha (X) is a TMC26X
motor_driver_control.alpha.designator X # A to set the settings
motor_driver_control.alpha.chip TMC2660 # chip name
motor_driver_control.alpha.current 1000 # current in milliamps
motor_driver_control.alpha.max_current 3000 # max current in milliamps
motor_driver_control.alpha.microsteps 256 # microsteps 256 max
motor_driver_control.alpha.alarm true # set to true means the error bits are checked
motor_driver_control.alpha.halt_on_alarm false # if set to true means ON_HALT is entered on any error bits being set
motor_driver_control.alpha.spi_channel 0 # SPI channel 1 is sdcard channel
motor_driver_control.alpha.spi_cs_pin 0.10 # SPI CS pin
#motor_driver_control.alpha.spi_frequency 100000 # SPI frequency
motor_driver_control.alpha.sense_resistor 100 # set the sense resistor used.

motor_driver_control.beta.enable true # beta (Y) is a TMC26X
motor_driver_control.beta.designator Y # B to set the settings
motor_driver_control.beta.chip TMC2660 # chip name
motor_driver_control.beta.current 2000 # current in milliamps
motor_driver_control.beta.max_current 3000 # max current in milliamps
motor_driver_control.beta.microsteps 256 # microsteps 256 max
motor_driver_control.beta.alarm true # set to true means the error bits are checked
motor_driver_control.beta.halt_on_alarm false # if set to true means ON_HALT is entered on any error bits being set
motor_driver_control.beta.spi_channel 0 # SPI channel 1 is sdcard channel
motor_driver_control.beta.spi_cs_pin 0.19 # SPI CS pin DRV8711 requires inverted CS
#motor_driver_control.beta.spi_frequency 100000 # SPI frequency
motor_driver_control.beta.sense_resistor 100 # set the sense resistor used

motor_driver_control.gamma.enable true # gamma (Z) is a TMC26X
motor_driver_control.gamma.designator Z # G to set the settings
motor_driver_control.gamma.chip TMC2660 # chip name
motor_driver_control.gamma.current 2000 # current in milliamps
motor_driver_control.gamma.max_current 3000 # max current in milliamps
motor_driver_control.gamma.microsteps 32 # microsteps 256 max
motor_driver_control.gamma.alarm true # set to true means the error bits are checked
motor_driver_control.gamma.halt_on_alarm false # if set to true means ON_HALT is entered on any error bits being set
motor_driver_control.gamma.spi_channel 0 # SPI channel 1 is sdcard channel
motor_driver_control.gamma.spi_cs_pin 0.21 # SPI CS pin DRV8711 requires inverted CS
#motor_driver_control.gamma.spi_frequency 100000 # SPI frequency
motor_driver_control.gamma.sense_resistor 100 # set the sense resistor used

  1. Serial communications configuration ( baud rate default to 9600 if undefined )

uart0.baud_rate 115200 # Baud rate for the default hardware serial port
second_usb_serial_enable false # This enables a second usb serial port (to have both pronterface and a terminal connected)
#msd_disable false # disable the MSD (USB SDCARD) when set to true

  1. Extruder module configuration

extruder.hotend.enable true # Whether to activate the extruder module at all. All configuration is ignored if false
extruder.hotend.steps_per_mm 996 # Steps per mm for extruder stepper
extruder.hotend.default_feed_rate 2400 # Default rate ( mm/minute ) for moves where only the extruder moves
extruder.hotend.acceleration 500 # Acceleration for the stepper motor mm/sec²
extruder.hotend.max_speed 12000 # mm/s

extruder.hotend.step_pin 2.0 # Pin for extruder step signal
extruder.hotend.dir_pin 0.5 # Pin for extruder dir signal
extruder.hotend.en_pin nc # Pin for extruder enable signal

  1. extruder offset

extruder.hotend.x_offset 0 # x offset from origin in mm
extruder.hotend.y_offset 0 # y offset from origin in mm
extruder.hotend.z_offset 0 # z offset from origin in mm

  1. firmware retract settings when using G10/G11, these are the defaults if not defined, must be defined for each extruder if not using the defaults

#extruder.hotend.retract_length 3 # retract length in mm
#extruder.hotend.retract_feedrate 45 # retract feedrate in mm/sec
#extruder.hotend.retract_recover_length 0 # additional length for recover
#extruder.hotend.retract_recover_feedrate 8 # recover feedrate in mm/sec (should be less than retract feedrate)
#extruder.hotend.retract_zlift_length 0 # zlift on retract in mm, 0 disables
#extruder.hotend.retract_zlift_feedrate 6000 # zlift feedrate in mm/min (Note mm/min NOT mm/sec)
delta_current 1.0 # Extruder stepper motor current

motor_driver_control.delta.enable true # delta (E1) is a TMC26X
motor_driver_control.delta.designator A # D to set the settings
motor_driver_control.delta.chip TMC2660 # chip name
motor_driver_control.delta.current 2000 # current in milliamps
motor_driver_control.delta.max_current 2500 # max current in milliamps
motor_driver_control.delta.microsteps 256 # microsteps 256 max
#motor_driver_control.delta.decay_mode 1 # decay mode default
motor_driver_control.delta.alarm true # set to true means the error bits are checked
motor_driver_control.delta.halt_on_alarm false # if set to true means ON_HALT is entered on any error bits being set
motor_driver_control.delta.spi_channel 0 # SPI channel 1 is sdcard channel
motor_driver_control.delta.spi_cs_pin 0.4 # SPI CS pin
#motor_driver_control.delta.spi_frequency 100000 # SPI frequency
motor_driver_control.delta.sense_resistor 100 # set the sense resistor used.

  1. Second extruder module configuration

extruder.hotend2.enable false # Whether to activate the extruder module at all. All configuration is ignored if false
extruder.hotend2.steps_per_mm 143.4 # Steps per mm for extruder stepper
extruder.hotend2.default_feed_rate 1200 # Default rate ( mm/minute ) for moves where only the extruder moves
extruder.hotend2.acceleration 50000 # Acceleration for the stepper motor, as of 0.6, arbitrary ratio
extruder.hotend2.max_speed 50 # mm/s

extruder.hotend2.step_pin 2.8 # Pin for extruder step signal
extruder.hotend2.dir_pin 2.13 # Pin for extruder dir signal
extruder.hotend2.en_pin nc # Pin for extruder enable signal

extruder.hotend2.x_offset 0 # x offset from origin in mm
extruder.hotend2.y_offset 25.0 # y offset from origin in mm
extruder.hotend2.z_offset 0 # z offset from origin in mm
epsilon_current 1.0 # Second extruder stepper motor current

motor_driver_control.epsilon.enable false # epsilon (E2) is a TMC26X
motor_driver_control.epsilon.designator B # E to set the settings
motor_driver_control.epsilon.chip TMC2660 # chip name
motor_driver_control.epsilon.current 1500 # current in milliamps
motor_driver_control.epsilon.max_current 3000 # max current in milliamps
motor_driver_control.epsilon.microsteps 256 # microsteps 256 max
motor_driver_control.epsilon.alarm true # set to true means the error bits are checked
motor_driver_control.epsilon.halt_on_alarm false # if set to true means ON_HALT is entered on any error bits being set
motor_driver_control.epsilon.spi_channel 0 # SPI channel 1 is sdcard channel
motor_driver_control.epsilon.spi_cs_pin 4.29 # SPI CS pin DRV8711 requires inverted CS
#motor_driver_control.epsilon.spi_frequency 100000 # SPI frequency
motor_driver_control.epsilon.sense_resistor 100 # set the sense resistor used

  1. Laser module configuration

laser_module_enable false # Whether to activate the laser module at all. All configuration is ignored if false.
#laser_module_pin 2.7 # this pin will be PWMed to control the laser
#laser_module_max_power 0.8 # this is the maximum duty cycle that will be applied to the laser
#laser_module_tickle_power 0.0 # this duty cycle will be used for travel moves to keep the laser active without actually burning

  1. Hotend temperature control configuration

temperature_control.hotend.enable true # Whether to activate this ( "hotend" ) module at all. All configuration is ignored if false.
temperature_control.hotend.thermistor_pin 0.24 # Pin for the thermistor to read
temperature_control.hotend.heater_pin 2.4 # Pin that controls the heater
temperature_control.hotend.thermistor Semitec # see
#temperature_control.hotend.beta 4066 # or set the beta value

temperature_control.hotend.set_m_code 104 #
temperature_control.hotend.set_and_wait_m_code 109 #
temperature_control.hotend.designator T #

temperature_control.hotend.p_factor 18 #
temperature_control.hotend.i_factor 0.975 #
temperature_control.hotend.d_factor 83 #

#temperature_control.hotend.max_pwm 255 # max pwm, 64 is a good value if driving a 12v resistor with 24v.

#SAFETY
temperature_control.hotend.max_temp 300
temperature_control.hotend2.max_temp 300
temperature_control.bed.max_temp 120

temperature_control.hotend.runaway_heating_timeout 120
temperature_control.hotend2.runaway_heating_timeout 120
temperature_control.bed.runaway_heating_timeout 0

temperature_control.hotend.runaway_range 10
temperature_control.hotend2.runaway_range 10
temperature_control.bed.runaway_range 5

  1. Hotend2 temperature control configuration

temperature_control.hotend2.enable false # Whether to activate this ( "hotend" ) module at all. All configuration is ignored if false.

temperature_control.hotend2.thermistor_pin 0.25 # Pin for the thermistor to read
temperature_control.hotend2.heater_pin 2.5 # Pin that controls the heater
temperature_control.hotend2.thermistor EPCOS100K # see
##temperature_control.hotend2.beta 4066 # or set the beta value
temperature_control.hotend2.set_m_code 104 #
temperature_control.hotend2.set_and_wait_m_code 109 #
temperature_control.hotend2.designator T1 #

#temperature_control.hotend2.p_factor 18.0 # permanently set the PID values after an auto pid
#temperature_control.hotend2.i_factor 0.975 #
#temperature_control.hotend2.d_factor 83 #

#temperature_control.hotend2.max_pwm 64 # max pwm, 64 is a good value if driving a 12v resistor with 24v.

temperature_control.bed.enable true #
temperature_control.bed.thermistor_pin 0.23 #
temperature_control.bed.heater_pin 2.7 #
temperature_control.bed.thermistor EPCOS100K # see
#temperature_control.bed.beta 4066 # or set the beta value

temperature_control.bed.set_m_code 140 #
temperature_control.bed.set_and_wait_m_code 190 #
temperature_control.bed.designator B #

#temperature_control.bed.max_pwm 64 # max pwm, 64 is a good value if driving a 12v resistor with 24v.

  1. Switch module for fan control

switch.fan.enable true #
switch.fan.input_on_command M106 #
switch.fan.input_off_command M107 #
switch.fan.output_pin 1.22 #

switch.misc.enable true #
switch.misc.input_on_command M42 #
switch.misc.input_off_command M43 #
switch.misc.output_pin 0.26 #

  1. automatically toggle a switch at a specified temperature. Different ones of these may be defined to monitor different temperatures and switch different swithxes
  2. useful to turn on a fan or water pump to cool the hotend

temperatureswitch.hotend.enable true #
temperatureswitch.hotend.designator T # first character of the temperature control designator to use as the temperature sensor to monitor
temperatureswitch.hotend.switch misc # select which switch to use, matches the name of the defined switch
temperatureswitch.hotend.threshold_temp 60.0 # temperature to turn on (if rising) or off the switch
temperatureswitch.hotend.heatup_poll 15 # poll heatup at 15 sec intervals
temperatureswitch.hotend.cooldown_poll 60 # poll cooldown at 60 sec intervals

  1. filament out detector

filament_detector.enable false #
filament_detector.encoder_pin 0.27 # must be interrupt enabled pin (0.26, 0.27, 0.28)
filament_detector.seconds_per_check 2 # may need to be longer
#filament_detector.pulses_per_mm 1 .0 # will need to be tuned
#filament_detector.bulge_pin 0.27 # optional bulge detector switch and/or manual suspend

  1. Switch module for spindle control

#switch.spindle.enable false #

  1. Endstops

endstops_enable true # the endstop module is enabled by default and can be disabled here
#corexy_homing false # set to true if homing on a hbit or corexy
alpha_min_endstop 1.24! # add a ! to invert if endstop is NO connected to ground
#alpha_max_endstop 1.27! #
alpha_homing_direction home_to_min # or set to home_to_max and set alpha_max
alpha_min 0 # this gets loaded after homing when home_to_min is set
alpha_max 254 # this gets loaded after homing when home_to_max is set
beta_min_endstop 1.25! #
#beta_max_endstop 1.28! #
beta_homing_direction home_to_min #
beta_min 0 #
beta_max 254 #
gamma_min_endstop 1.26! #
#gamma_max_endstop 1.29! #
gamma_homing_direction home_to_min #
gamma_min 0 #
gamma_max 254 #

  1. optional enable limit switches, actions will stop if any enabled limit switch is triggered

#alpha_limit_enable false # set to true to enable X min and max limit switches
#beta_limit_enable false # set to true to enable Y min and max limit switches
#gamma_limit_enable false # set to true to enable Z min and max limit switches

#probe endstop
#probe_pin 1.29 # optional pin for probe

alpha_fast_homing_rate_mm_s 70 # feedrates in mm/second
beta_fast_homing_rate_mm_s 50 # "
gamma_fast_homing_rate_mm_s 4 # "
alpha_slow_homing_rate_mm_s 40 # "
beta_slow_homing_rate_mm_s 25 # "
gamma_slow_homing_rate_mm_s 2 # "

alpha_homing_retract_mm 5 # distance in mm
beta_homing_retract_mm 5 # "
gamma_homing_retract_mm 1 # "

#endstop_debounce_count 100 # uncomment if you get noise on your endstops, default is 100

  1. optional Z probe

zprobe.enable false # set to true to enable a zprobe
zprobe.probe_pin 1.29!^ # pin probe is attached to if NC remove the !
zprobe.slow_feedrate 5 # mm/sec probe feed rate
#zprobe.debounce_count 100 # set if noisy
zprobe.fast_feedrate 100 # move feedrate mm/sec
zprobe.probe_height 5 # how much above bed to start probe

  1. associated with zprobe the leveling strategy to use

#leveling-strategy.three-point-leveling.enable true # a leveling strategy that probes three points to define a plane and keeps the Z parallel to that plane
#leveling-strategy.three-point-leveling.point1 100.0,0.0 # the first probe point (x,y) optional may be defined with M557
#leveling-strategy.three-point-leveling.point2 200.0,200.0 # the second probe point (x,y)
#leveling-strategy.three-point-leveling.point3 0.0,200.0 # the third probe point (x,y)
#leveling-strategy.three-point-leveling.home_first true # home the XY axis before probing
#leveling-strategy.three-point-leveling.tolerance 0.03 # the probe tolerance in mm, anything less that this will be ignored, default is 0.03mm
#leveling-strategy.three-point-leveling.probe_offsets 0,0,0 # the probe offsets from nozzle, must be x,y,z, default is no offset
#leveling-strategy.three-point-leveling.save_plane false # set to true to allow the bed plane to be saved with M500 default is false

  1. kill button (used to be called pause) maybe assigned to a different pin, set to the onboard pin by default

kill_button_enable true # set to true to enable a kill button
kill_button_pin 2.12 # kill button pin.

  1. Panel See

panel.enable false # set to true to enable the panel code

  1. Example viki2 config for an azteeg miniV2 with IDC cable

panel.lcd viki2 # set type of panel
panel.spi_channel 0 # set spi channel to use P0_18,P0_15 MOSI,SCLK
panel.spi_cs_pin 0.16 # set spi chip select
panel.encoder_a_pin 3.26!^ # encoder pin
panel.encoder_b_pin 3.25!^ # encoder pin
panel.click_button_pin 2.11!^ # click button
panel.a0_pin 2.6 # st7565 needs an a0
panel.contrast 0 # override contrast setting (default is 9)
panel.encoder_resolution 1 # override number of clicks to move 1 item (default is 4)
#panel.button_pause_pin 1.30^ # kill/pause set one of these for the auxilliary button on viki2
#panel.back_button_pin 1.22!^ # back button recommended to use this on EXP1
panel.buzz_pin 1.31 # pin for buzzer on EXP2
panel.red_led_pin 1.19 # pin for red led on viki2 on EXP1
panel.blue_led_pin 1.20 # pin for blue led on viki2 on EXP1
panel.external_sd true # set to true if there is an extrernal sdcard on the panel
panel.external_sd.spi_channel 0 # set spi channel the sdcard is on
panel.external_sd.spi_cs_pin 1.21 # set spi chip select for the sdcard
panel.external_sd.sdcd_pin 1.18!^ # sd detect signal (set to nc if no sdcard detect) 1.18
panel.menu_offset 1 # some panels will need 1 here

  1. Example miniviki2 config

#panel.lcd mini_viki2 # set type of panel
#panel.spi_channel 0 # set spi channel to use P0_18,P0_15 MOSI,SCLK
#panel.spi_cs_pin 0.16 # set spi chip select
#panel.encoder_a_pin 3.25!^ # encoder pin
#panel.encoder_b_pin 3.26!^ # encoder pin
#panel.click_button_pin 2.11!^ # click button
#panel.a0_pin 2.6 # st7565 needs an a0
##panel.contrast 18 # override contrast setting (default is 18)
##panel.encoder_resolution 2 # override number of clicks to move 1 item (default is 2)
#panel.menu_offset 1 # here controls how sensitive the menu is. some panels will need 1

panel.alpha_jog_feedrate 48000 # x jogging feedrate in mm/min
panel.beta_jog_feedrate 48000 # y jogging feedrate in mm/min
panel.gamma_jog_feedrate 200 # z jogging feedrate in mm/min

panel.hotend_temperature 185 # temp to set hotend when preheat is selected
panel.T1_temperature 185 # temp to set hotend when preheat is selected
panel.bed_temperature 60 # temp to set bed when preheat is selected

  1. network settings

network.enable true # enable the ethernet network services
network.webserver.enable true # enable the webserver
network.telnet.enable true # enable the telnet server
network.plan9.enable true # enable the plan9 network filesystem
network.ip_address 192.168.0.123 # the IP address
#network.ip_mask 255.255.255.0 # the ip mask
#network.ip_gateway 192.168.0.1 # the gateway address

  1. Example of a custom menu entry, which will show up in the Custom entry.
  2. NOTE _ gets converted to space in the menu and commands, | is used to separate multiple commands

custom_menu.power_on.enable true #
custom_menu.power_on.name Power_on #
custom_menu.power_on.command M80 #

custom_menu.power_off.enable true #
custom_menu.power_off.name Power_off #
custom_menu.power_off.command M81 #

  1. Azteeg specific settings do not change

currentcontrol_module_enable false #
digipot_max_current 2.4 # max current
digipot_factor 103.0 # factor for converting current to digipot value
#51.0 for SD8825, SD6128, BSD4989

leds_disable true # disable using leds after config loaded[[/code]]

Imported from wikidot

When you say “heaters on”, do you mean : 
A. The heaters are actually on 100% and temp just goes up uncontrolled or
B. The temperature is maintained fixed at the set temperature and stays there, but you don’t have control over the board anymore ?

If it’s A, it really shouldn’t happen, there are several safety features in place to prevent it and I can’t see how it’d be possible.
If it’s B, it’s possibly some kind of USB error/crash ( possibly in the host USB drivers ) that leaves the board thinking it’s not being talked to

I mean option A

The board Freezes and all mofsets lock on until reset. (physical button / power cycle). This is confirmed by the mofset-on LED’s as well as LED’s on the actual heatbed - The board is full-bore locked on, and I cannot move the motors either - they stay powered. I’ve melted two E3D V6 Full Metals with aluminum blocks. (can provide pictures).

Once reset, the board behaves normally, connects to computer, and will heat appropriately (PID or Bang-Bang) for the next few prints. No Error Codes are sent to connected PC’s. If I purposely set the typical safety configs low (make heatup time extremely short or max temp 1 above the temperature) It will shut down all mofsets as intended and flash warning LED’s.

This is the primary reason I’m confused, as its one of the main reasons I wanted to switch to Smoothie.

Neither Mofset is near the edge of its capabilities, The hotend heater is a 24V 40W heater, and the bed mofset on one machine drives a 300W load at 24V, and the other machine has an external mofset for bed heating.

Thank you for responding Arthur.

This is very weird, as I said, this is something Smoothie could do in it’s first months years ago, and since a lot of work has gone into making sure it can’t, and today we never hear of such instances. I really don’t see any way it could possibly happen ( at least on a smoothieboard, but I have a hard time seeing what diff on the azteeg would allow it ).

Using latest firmware/config example ?

Anything special about your setup ? ( giant printer, anything weird … )

Nothing special about either set up -

one is 10x10x10", the other 12x16x14". Otherwise, simple electronics that i’ve been using for over 10,000 print hours on my marlin setup.

Using latest firmware - I’ve flashed and reflashed both using the firmware link on the website (edge branch) and after i load the new firmware it changes the file extension to .cur afterwards.

The config I’ll have to 100% check, I’m using TMC2600 based drivers so I *am* using Panucatt’s documentation.

Not sure it’s relevant, but I’m really at a loss for an explanation here, so why not : are you using smoothieware’s example config, or panucatt’s example config as a starting point ?

Hey Arthurwolf-

Just a follow up - I’ve been tinkering with it for the last month or so and watching it closely, and it seems to be an issue with the Ethernet module being physically installed on the GT X5 that causes this behavior. I’ve taken it off of one board and that board has not had any of these odd issues since.

As for the config - I went through it line by line, pegged any value that didn’t immediately match, and replaced two lines that i’m pretty sure aren’t used anyways. That has had no effect on the other board.

Still waiting on an official response from panucatt.